3.508 \(\int \cot (c+d x) \sqrt {a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=116 \[ -\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {a-i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d} \]

[Out]

-2*arctanh((a+b*tan(d*x+c))^(1/2)/a^(1/2))*a^(1/2)/d+arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))*(a-I*b)^(1/
2)/d+arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))*(a+I*b)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3572, 3539, 3537, 63, 208, 3634} \[ -\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {a-i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(-2*Sqrt[a]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/d + (Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqr
t[a - I*b]])/d + (Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3572

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[(d*(b*c
- a*d))/(c^2 + d^2), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin {align*} \int \cot (c+d x) \sqrt {a+b \tan (c+d x)} \, dx &=a \int \frac {\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt {a+b \tan (c+d x)}} \, dx+\int \frac {b-a \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {1}{2} (-i a+b) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {1}{2} (i a+b) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx+\frac {a \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac {(a-i b) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac {(a+i b) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}+\frac {(2 a) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {(i a-b) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}-\frac {(i a+b) \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}\\ &=-\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {a-i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {\sqrt {a+i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 111, normalized size = 0.96 \[ \frac {-2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a}}\right )+\sqrt {a-i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )+\sqrt {a+i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(-2*Sqrt[a]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]] + Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a
- I*b]] + Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d

________________________________________________________________________________________

fricas [B]  time = 1.51, size = 3585, normalized size = 30.91 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/4*(4*sqrt(2)*d^5*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4
)*arctan(-((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4) + sqrt(2)*(d^
7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x +
c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*(d^7*sqrt(b^2/d^4)*
sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(((a^2 +
 b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)
*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2
 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*c
os(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) + 4*sqrt(2)*d^5*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a
^2 - b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^
4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4) - sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))
*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a
^2 + b^2)/d^4)^(3/4) + sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sq
rt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - sqrt(2)*(a*d^
3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(
d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x
 + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) - sq
rt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4) + (a^2 + b^2)*d)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2
 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d
^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d
^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3
)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4) + (a^2 + b^2)*d)*sqrt(-(a*d
^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*
cos(d*x + c) - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x
 + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(
1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) - 2*(a^2 + b^2)*sq
rt(a)*log(-(8*a*b*cos(d*x + c)*sin(d*x + c) + (8*a^2 - b^2)*cos(d*x + c)^2 + b^2 - 4*(2*a*cos(d*x + c)^2 + b*c
os(d*x + c)*sin(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/(cos(d*x + c)^2 - 1)))
/((a^2 + b^2)*d), -1/4*(4*sqrt(2)*d^5*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(b^2/d^4)*((a^2
 + b^2)/d^4)^(3/4)*arctan(-((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d
^4) + sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt((a*cos(d*x + c) + b*sin(d*x
 + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*(d
^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/
b^2)*sqrt(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x +
 c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2
+ b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c
))/((a^2 + b^2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) + 4*sqrt(2)*d^5*sqrt(-(a*d^2*sqrt((a^
2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sq
rt((a^2 + b^2)/d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4) - sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d
^5*sqrt(b^2/d^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^
2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4) + sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4)
)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c
) - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*s
in(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3
 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2
*b^2 + b^4)) - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4) + (a^2 + b^2)*d)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2
- b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(a*d^3*s
qrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x
 + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x +
c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4) + (a^2 + b
^2)*d)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt(
(a^2 + b^2)/d^4)*cos(d*x + c) - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c)
)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((
a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) -
 8*(a^2 + b^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))/a))/((a^2 + b^2)*
d)]

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [C]  time = 2.36, size = 15731, normalized size = 135.61 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*cot(d*x + c), x)

________________________________________________________________________________________

mupad [B]  time = 4.06, size = 682, normalized size = 5.88 \[ -\frac {2\,\sqrt {a}\,\mathrm {atanh}\left (\frac {64\,\sqrt {a}\,b^{12}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{576\,a^5\,b^8+640\,a^3\,b^{10}+64\,a\,b^{12}}+\frac {640\,a^{5/2}\,b^{10}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{576\,a^5\,b^8+640\,a^3\,b^{10}+64\,a\,b^{12}}+\frac {576\,a^{9/2}\,b^8\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{576\,a^5\,b^8+640\,a^3\,b^{10}+64\,a\,b^{12}}\right )}{d}-\mathrm {atan}\left (-\frac {32\,a\,b^{11}\,\sqrt {\frac {a}{4\,d^2}-\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {16\,a\,b^{12}}{d}-\frac {a^2\,b^{11}\,48{}\mathrm {i}}{d}+\frac {16\,a^3\,b^{10}}{d}-\frac {a^4\,b^9\,48{}\mathrm {i}}{d}}+\frac {a^2\,b^{10}\,\sqrt {\frac {a}{4\,d^2}-\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,128{}\mathrm {i}}{\frac {16\,a\,b^{12}}{d}-\frac {a^2\,b^{11}\,48{}\mathrm {i}}{d}+\frac {16\,a^3\,b^{10}}{d}-\frac {a^4\,b^9\,48{}\mathrm {i}}{d}}+\frac {96\,a^3\,b^9\,\sqrt {\frac {a}{4\,d^2}-\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {16\,a\,b^{12}}{d}-\frac {a^2\,b^{11}\,48{}\mathrm {i}}{d}+\frac {16\,a^3\,b^{10}}{d}-\frac {a^4\,b^9\,48{}\mathrm {i}}{d}}\right )\,\sqrt {\frac {a-b\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i}-\mathrm {atan}\left (\frac {32\,a\,b^{11}\,\sqrt {\frac {a}{4\,d^2}+\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {16\,a\,b^{12}}{d}+\frac {a^2\,b^{11}\,48{}\mathrm {i}}{d}+\frac {16\,a^3\,b^{10}}{d}+\frac {a^4\,b^9\,48{}\mathrm {i}}{d}}+\frac {a^2\,b^{10}\,\sqrt {\frac {a}{4\,d^2}+\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,128{}\mathrm {i}}{\frac {16\,a\,b^{12}}{d}+\frac {a^2\,b^{11}\,48{}\mathrm {i}}{d}+\frac {16\,a^3\,b^{10}}{d}+\frac {a^4\,b^9\,48{}\mathrm {i}}{d}}-\frac {96\,a^3\,b^9\,\sqrt {\frac {a}{4\,d^2}+\frac {b\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {16\,a\,b^{12}}{d}+\frac {a^2\,b^{11}\,48{}\mathrm {i}}{d}+\frac {16\,a^3\,b^{10}}{d}+\frac {a^4\,b^9\,48{}\mathrm {i}}{d}}\right )\,\sqrt {\frac {a+b\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)*(a + b*tan(c + d*x))^(1/2),x)

[Out]

- atan((a^2*b^10*(a/(4*d^2) - (b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*128i)/((16*a*b^12)/d - (a^2*b^1
1*48i)/d + (16*a^3*b^10)/d - (a^4*b^9*48i)/d) - (32*a*b^11*(a/(4*d^2) - (b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d
*x))^(1/2))/((16*a*b^12)/d - (a^2*b^11*48i)/d + (16*a^3*b^10)/d - (a^4*b^9*48i)/d) + (96*a^3*b^9*(a/(4*d^2) -
(b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*a*b^12)/d - (a^2*b^11*48i)/d + (16*a^3*b^10)/d - (a^4*b
^9*48i)/d))*((a - b*1i)/(4*d^2))^(1/2)*2i - atan((32*a*b^11*(a/(4*d^2) + (b*1i)/(4*d^2))^(1/2)*(a + b*tan(c +
d*x))^(1/2))/((16*a*b^12)/d + (a^2*b^11*48i)/d + (16*a^3*b^10)/d + (a^4*b^9*48i)/d) + (a^2*b^10*(a/(4*d^2) + (
b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*128i)/((16*a*b^12)/d + (a^2*b^11*48i)/d + (16*a^3*b^10)/d + (a
^4*b^9*48i)/d) - (96*a^3*b^9*(a/(4*d^2) + (b*1i)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((16*a*b^12)/d + (
a^2*b^11*48i)/d + (16*a^3*b^10)/d + (a^4*b^9*48i)/d))*((a + b*1i)/(4*d^2))^(1/2)*2i - (2*a^(1/2)*atanh((64*a^(
1/2)*b^12*(a + b*tan(c + d*x))^(1/2))/(64*a*b^12 + 640*a^3*b^10 + 576*a^5*b^8) + (640*a^(5/2)*b^10*(a + b*tan(
c + d*x))^(1/2))/(64*a*b^12 + 640*a^3*b^10 + 576*a^5*b^8) + (576*a^(9/2)*b^8*(a + b*tan(c + d*x))^(1/2))/(64*a
*b^12 + 640*a^3*b^10 + 576*a^5*b^8)))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \tan {\left (c + d x \right )}} \cot {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*cot(c + d*x), x)

________________________________________________________________________________________